
by Edgard Garcia
Engineer, Multi Video Designs
edgard.garcia@mvd-fpga.com

Image processing is key for many automated
industrial inspection applications. However,
even the most sophisticated algorithms can’t
extract the right information if the image
contents are not available in a convenient
format. By using a histogram, you can ensure
that the image content can be easily
processed.

What is a Histogram?

For each possible pixel value, the histogram
algorithm counts the number of times the
value was encountered in the current image.
For example, the histogram of an 8-bit-per-
pixel image will contain 256 values (28), each
one representing the number of pixels found
at this value. This allows a microprocessor or
DSP to quickly get the profile of the image,
and take the appropriate decisions, by ana-
lyzing just those 256 precomputed values.
You can do this easily, in real time and at low
cost, in a Virtex or Spartan-II FPGA.

A Basic Hardware Implementation

For an 8-bit-per-pixel image, 256 different
values are possible for each pixel, so 256 16-
bit counters would be necessary to complete
the real time histogram. However, only one

of the 256 counters will be active at each
valid pixel clock (only one value will be
updated). Therefore, the registers of the 256
x 16 bit counters can be replaced by a mem-
ory array, such as a 4K-bit block
SelectRAM™ organized as 256 x 16
(RAMB4_S16).

A 16-bit incrementer will allow you to
update the RAM contents during a Read-
Modify-Write operation, where the video
data inputs are used as the address of the
memory block. Figure 1 shows the block dia-
gram of a basic hardware implementation.

Applications FPGAs

Use the VirtexTM or SpartanTM-II True Dual-PortTM RAM and DLLs to create a real-time histogram.

Implementing a
Histogram for Image
Processing Applications

46

Figure 1 - Basic hardware implementation

Optimized Implementation

Each memory cycle can be either a Read
or a Write, so we need to divide each pixel
clock cycle in two sub-cycles: a Read cycle
for getting the current value, and a Write
cycle for updating (+1) the memory con-
tent. You can do this easily, using a
CLKDLL to recover a clock at twice the
frequency of the video clock (CLK2X),
and to create an image of this clock shift-
ed by 90° to validate Read and Write
cycles. Figure 2 shows the detailed dia-
gram of an optimized implementation.

During horizontal and vertical retrace,
pixel values must be discarded. This is
done with no additional logic, by con-
necting the BLANKING# signal to the
ENA input of the memory block. Figure
3 illustrates the timing of the operations.

The DSP or microprocessor can directly
read the result of the histogram by using
the B port of the same block SelectRAM
(configured as a RAMB4_S16_S16). A
multiplexer is not needed because the two
ports (A and B) each have dedicated inputs.

Conclusion

By taking advantage of the high level fea-
tures of the Virtex and Spartan-II FPGA
architectures, you can greatly increase the
speed and reduce the cost of your designs.
For more information about how to imple-
ment the histogram algorithm, e-mail:
edgard.garcia@mvd-fpga.com

Resources and Performance

Here are the logic resources required for
implementing the histogram algorithm:

• 1 x CLKDLL + BUFG

• 1 x RAMB4_S16_S16

• 1 x 16-bit INCREMENTER (8 slices)

For a Virtex -6 or Spartan-II -6 device, Fpix
= 50 MHz.

Applications FPGAs

47

10

VIDEO_CLOCK

CLK2X

CLK90

BLANKING#

VIDEO_IN
(after register)

DOA

DIA

0

1 1 1 2 1 x+1 y+1

0 0 1 0 x y

42 33 10 73 D(n-2) D(n-1)

READ READ READ READ READ READ READ READ READ READ

WRITE

PIXEL CYCLE

WRITE WRITE WRITE WRITE WRITE WRITE WRITE WRITE

Figure 2 - An optimized implementation

Figure 3 - Timing

