
by Edgard Garcia
Xilinx Consultant/Designer
Multi Video Designs.
edgard.garcia@mvd-fpga.com

The Xilinx® Virtex™-4 family introduced
a new high-performance concept for fast
and complex DSP algorithm implementa-
tion. The XtremeDSP™ Design
Considerations User Guide, available on
the Xilinx website (www.xilinx.com/bvdocs/
userguides/ug073.pdf), describes how you
can take advantage of the DSP48 architec-
ture and includes several examples.

When you have to develop a real DSP
application, you can of course instantiate
each DSP48 block and assign their respec-
tive attribute values to obtain the correct
behavior. But did you know you can also
infer most of the useful DSP48 configura-
tions by writing very simple RTL code?

Developing DSP algorithms in VHDL
(or Verilog) is a nice way to maintain
designs over a long period of time, but the

synthesis results must meet your perform-
ance requirements. In this article, I will
show you how to write RTL code to take
full advantage of Virtex-4 DSP48 blocks.

DSP48 Architecture
The Virtex-4 DSP48 architecture is exten-
sively described in the XtremeDSP User
Guide. Let’s start, however, with an
overview of some very important aspects of
DSP48 blocks:

• DSP48 blocks have two18-bit inputs
to feed the multiplier. If you want to
work with unsigned data, 17 bits is
the maximum width of the multiplier
inputs. Don’t forget to expand the
unsigned data/coefficients by concate-
nating one or more ‘0’ to the most sig-
nificant bit (MSB). Similarly, if using
the adder/subtracter, its inputs and
output will have to be 48 bits or less
for signed arithmetic and 47 bits or
less for unsigned.

For the examples described in this arti-
cle, we will use signed data. You will have
to use the IEEE.STD_LOGIC_SIGNED
package.

• Another important parameter for
describing DSP behavior for Virtex-4
DSP48 blocks is that all DSP48 inter-
nal registers have a synchronous reset
(using asynchronous reset will prevent
the synthesis tool from using the
DSP48 internal registers). The reset
functionality has priority, regardless of
OpCode or other control inputs.

• It is important to note that the last
stage of the adder/subtracter can be
driven dynamically to take a 48-bit
input (from the output stage feedback
or from the DSP48 C or Pcin input)
and to add or subtract another 48- or
36-bit input (originating for most
common cases from the multiplier
output).

Writing RTL Code for Virtex-4
DSP48 Blocks with XST 8.1i

00 Xcell Journal Fourth Quarter 2005

Writing RTL code for your DSP applications is easy and efficient.

Basic Examples
1. Multiplier_accumulator. This commonly used function is our
first example, useful for FIR filters and other DSP functions. Here
is the source code:

library IEEE; use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_SIGNED.ALL; — Signed arithmetic is used

entity MULT_ACC is
Port (CK : in std_logic;

RST : in std_logic; — Synchronous reset
Ain, Bin : in std_logic_vector(17 downto 0); — A and B inputs of the multiplier
S : out std_logic_vector(47 downto 0)); — Accumulator output

end MULT_ACC;

architecture Behavioral of MULT_ACC is

signal ACC : std_logic_vector(47 downto 0); — Accumulator output

begin

process(CK) begin
if CK’event and CK = ‘1’ then

if RST = ‘1’ then ACC <= (others => ‘0’);
else ACC <= ACC + (AIN * BIN);
end if;

end if;
end process;

S <= ACC;

end Behavioral;

This example will be synthesized into a single DSP48 block – no
other logic resource is necessary. The performance is about 180-200
MHz, depending on placement and routing.

2. Fully pipelined Multiplier_accumulator. If you need more per-
formance and less dependency on place and route tools, you can
still improve the performance of the Multiplier_accumulator. The
DSP48 blocks have internal input registers (zero, one, or two stages
for A and B inputs), as well as one selectable multiplier output reg-
ister. The following RTL code uses one level of registers at the A and
B inputs, as well as the multiplier output register:

library IEEE; use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_SIGNED.ALL; — Signed arithmetic is used

entity MULT_ACC is
Port (CK : in std_logic;

RST : in std_logic; — Synchronous reset
Ain, Bin : in std_logic_vector(17 downto 0); — A and B inputs of the multiplier
S : out std_logic_vector(47 downto 0)); — Accumulator output

end MULT_ACC;

architecture Behavioral of MULT_ACC is

signal AinR, BinR : std_logic_vector(17 downto 0); — Registered Ain and Bin
signal MULTR : std_logic_vector(35 downto 0); — Registered multiplier output
signal ACC : std_logic_vector(47 downto 0); — Accumulator output

begin

process(CK) begin
if CK’event and CK = ‘1’ then

if RST = ‘1’ then AinR <= (others => ‘0’);
BinR <= (others => ‘0’);
MULTR <= (others => ‘0’);
ACC <= (others => ‘0’);

else AinR <= Ain;

BinR <= Bin;
MULTR <= AinR * BinR;
ACC <= ACC + MULTR;

end if;
end if;

end process;

S <= ACC;

end Behavioral;

This example will be synthesized by using just a single DSP
block. You can take advantage of the internal registers to greatly
improve performance to more than 400 MHz for the slowest
Virtex-4 speed grade, independent of the implementation (place
and route) tools.

3. Fully pipelined Loadable_Multiplier_accumulator. You can
improve the design further by using a loadable multiplier accumu-
lator. For more details, please refer to the class material of the Xilinx
course, “DSP Implementation Techniques for Xilinx FPGAs”
(www.xilinx.com/support/training/abstracts/dsp-implementation.htm).
Let’s modify the previous code for the load functionality:

library IEEE; use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_SIGNED.ALL; — Signed arithmetic is used

entity MULT_ACC_LD is
Port (CK : in std_logic;

RST : in std_logic; — Synchronous reset
Ain, Bin : in std_logic_vector(17 downto 0); — A and B inputs of the multiplier
LOAD : in std_logic; — Active high LOAD command
S : out std_logic_vector(47 downto 0)); — Accumulator output

end MULT_ACC_LD;

architecture Behavioral of MULT_ACC_LD is

signal AinR, BinR : std_logic_vector(17 downto 0); — Registered Ain and Bin
signal MULTR : std_logic_vector(35 downto 0); — Registered multiplier output
signal ACC : std_logic_vector(47 downto 0); — Accumulator output

— 48 bit “ZERO” constant used for MULTR sign extension to 48 bits
constant ZERO : std_logic_vector(47 downto 0) := (others => ‘0’);

begin

process(CK) begin
if CK’event and CK = ‘1’ then

if RST = ‘1’ then AinR <= (others => ‘0’);
BinR <= (others => ‘0’);
MULTR <= (others => ‘0’);
ACC <= (others => ‘0’);

else AinR <= Ain;
BinR <= Bin;
MULTR <= AinR * BinR;

if LOAD = ‘1’ then
ACC <= ZERO + MULTR; — OpCode = x05

else
ACC <= ACC + MULTR; — OpCode = x25

end if;
end if;

end if;
end process;

S <= ACC;

end Behavioral;

Fourth Quarter 2005 Xcell Journal 00

4. Multiplier_accumulator_or_adder. This is another useful ver-
sion of the multiplier accumulator. It is useful for multiplications of
data buses of more than 18 bits (see Figure 1-18 in the XtremeDSP
User Guide). Here is the RTL code:

library IEEE; use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_SIGNED.ALL; — Signed arithmetic is used

entity MULT_ACC_ADD is
Port (CK : in std_logic;

RST : in std_logic;
SEL : in std_logic;
A_in, B_in : in std_logic_vector(17 downto 0);
C_in : in std_logic_vector(47 downto 0);
S : out std_logic_vector(47 downto 0));

end MULT_ACC_ADD;

architecture Behavioral of MULT_ACC_ADD is

constant ZERO : std_logic_vector(47 downto 0) := (others => ‘0’);

signal AR, BR : std_logic_vector(17 downto 0);
signal MULT : std_logic_vector(35 downto 0);
signal Pout : std_logic_vector(47 downto 0);

begin

process(CK) begin
if CK’event and CK = ‘1’ then

if RST = ‘1’ then AR <= (others => ‘0’);
BR <= (others => ‘0’);
MULT <= (others => ‘0’);
Pout <= (others => ‘0’);

else
AR <= A_in;
BR <= B_in;
MULT <= AR * BR;

if SEL = ‘0’ then Pout <= C_in + MULT; — Opcode = 0x35 for C input
— 0x15 for PCIN input

— if SEL = ‘0’ then Pout <= ZERO + MULT; — Opcode = 0x05 for ZERO
— constant as input (Note 1)

else Pout <= Pout + MULT; — Opcode = 0x25 (Notes 2, 3)
end if;

end if;
end if;

end process;

S <= Pout;

end Behavioral;

Note that the synthesis results are not currently as optimized as
we could expect with XST 8.1. Some combinatorial logic will be
used to implement the multiplexer between C_in and Pout, while
the same function was available inside the DSP48 block. The per-
formance is still 220 MHz for the -10 speed grade, and 270+ MHz
for -12. However, Synplify Pro 8.2 provides the ideal implementa-
tion with the same RTL code.

Note1 : Adding ZERO to Pout is equivalent to the previously
described load function.

Note 2 : You can also use the 17-bit right shift on Pout by chang-
ing this line as follows (at this time, this feature is supported only
by Synplicity Synplify Pro 8.2):

else Pout <= ZERO + Pout(47 downto 17) + MULT;

Note 3 : If for any reason you do not want to use the output reg-
ister of the multiplier, you can write:

Pout <= Pout + (AR * BR);

instead of declaring a combinatorial multiplier output. The result-
ing RTL code is also more compact.

5. Symmetric rounding. Another simple but useful example is a
multiplier with symmetric rounding (see Table 1-9 in the
XtremeDSP User Guide). Assuming that you want to round the
result of the multiplication Ain x Bin to 20 bits, the following RTL
code will be synthesized in just one DSP48 block and one slice:

library IEEE; use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_SIGNED.ALL;

entity ROUNDING is
Port (CK : in std_logic;

RST : in std_logic;
Ain, Bin : in std_logic_vector(17 downto 0);
P : out std_logic_vector(19 downto 0));

end ROUNDING;

architecture Behavioral of ROUNDING is

constant ZERO : std_logic_vector(47 downto 0) := (others => ‘0’);

signal AR, BR : std_logic_vector(17 downto 0);
signal MULTR : std_logic_vector(35 downto 0);
signal Pout : std_logic_vector(47 downto 0);

signal Carry_in, Carry_inR : std_logic;

begin

process(CK) begin
if CK’event and CK = ‘1’ then

Carry_in <= not(Ain(17) xor Bin(17));
Carry_inR <= Carry_in;
if RST = ‘1’ then AR <= (others => ‘0’);

BR <= (others => ‘0’);
MULTR <= (others => ‘0’);
Pout <= (others => ‘0’);

else
AR <= Ain;
BR <= Bin;
MULTR <= AR * BR;

— Note that the following 4 operands adder will be implemented as a 3 operand one :
— ZERO is a constant that allows easy sign extension for the VHDL syntax

Pout <= ZERO + MULTR + x”7FFF” + Carry_inR;
end if;

end if;
end process;

P <= Pout(35 downto 16);

end Behavioral;

This example will also work at 400 MHz for the Virtex-4 -10
speed grade device and 500 MHz for the -12 speed grade device.
Only one LUT and its associated slice flip-flop is used, as the sec-
ond flip-flop is pushed inside the DSP48 block for carry input.

All of these examples can be used in a wide range of applications.
You can see that they are very efficiently synthesized, and all of the
logic is mapped into the DSP48 blocks. The performance for each
of these DSP functions is independent of the place and route tools.

To make it easier for synthesis tools to recognize the DSP48 struc-

00 Xcell Journal Fourth Quarter 2005

ture, it is important to write the code in a simple way, giving your
tools the best option to pack your desired functions into each DSP48
block. For this reason, each code has been written in a single process.

The more simple and compact your RTL code, the more effi-
cient the synthesis result. Of course, depending on your synthesis
tool, other alternatives can also give you excellent results, but they
will be more dependent on the synthesis tools.

Higher Complexity Designs
What happens when you need more complex DSP functions? You
can use a similar approach for many complex DSP algorithm imple-
mentations by describing each block separately to ensure optimal
synthesis results.

You will find many other examples, most of them directly relat-
ed to those explained in their algorithmic and schematic form, in
the XtremeDSP User Guide.

Conclusion
This article is excerpted from the application note, “Virtex-4 DSP48
Inference,” which is available at www.mvd-fpga.com/en/publi_
V4_DSP48.html.

The application note includes additional examples, such as:

• Single DSP slice 35 x 18 multiplier (Figure 1-18 in the
XtremeDSP User Guide)

• Single DSP slice 35 x 35 multiplier (Figure 1-19 in the
XtremeDSP User Guide)

• Fully pipelined complex 18 x 18 multiplier (Figure 1-22
in the XtremeDSP User Guide)

• High-speed FIR filter (Figure 1-17 in the XtremeDSP
User Guide)

The application note also describes many of the important features
of DSP48 blocks supported by XST 8.1i and Synplify-Pro 8.2. MAP
reports, Timing Analyzer reports, and a detailed view of the FPGA
Editor show the efficiency of the synthesis and implementation tools.
You can also see how the cascade chain between adjacent DSP48 slices
is used to improve both performance and power consumption. Almost
all of these widely used configurations provide the best implementa-
tion results – in terms of resources used as well as performance.
However, some remaining limitations are also described. We expect
these few points to be resolved in future releases.

For more information, see the XtremeDSP Design
Considerations User Guide at www.xilinx.com/bvdocs/userguides/
ug073.pdf. The methodology is clearly explained and implementa-
tion results analyzed in detail, with ISE™ software tools like
Timing Analyzer and FPGA Editor.

Multi Video Designs (MVD) is a training and design center spe-
cializing in FPGA designs, PowerPC™ processors, RTOS for embed-
ded/real-time applications, and high-speed buses like PCI Express
and RapidIO. MVD as an Approved Training Partner and a mem-
ber of the Xilinx XPERTS program, with offices in France, Spain,
and South America.

Fourth Quarter 2005 Xcell Journal 00

XST Support for DSP48 Inference

XST, the synthesis engine included with the Xilinx®

ISE™ toolset, contains extensive support for inference of

DSP48 macros. A number of macro functions are recog-

nized and mapped to these dedicated resources, including

adders, subtracters, multipliers, and accumulators, as well as

combinations like multiply-add and multiply-accumulate

(MAC). Register stages can be absorbed into the DSP48

blocks, and direct connect resources are used to cascade

large or multiple functions.

Macro implementation on DSP48 blocks is controlled

by the USE_DSP48 constraint with a default value of

auto. In auto mode, XST attempts to implement all afore-

mentioned macros except adders or subtracters on DSP48

resources. To push adders or subtracters into a DSP48, set

the USE_DSP48 constraint value to yes.

XST performs automatic resource control in auto mode

for all macros except adders and subtracters. In this mode

you can control the number of available DSP48 resources

for synthesis using the DSP_UTILIZATION_RATIO

constraint, specifying either a percentage or absolute num-

ber. By default, XST tries to utilize, as much as possible, all

available DSP48 resources within a given device.

With the 8.1i release of ISE software, XST has intro-

duced further enhancements to its DSP support. XST can

now infer loadable accumulators and MACs, which are

critical for filter applications. XST can recognize chains of

complex filters or multipliers – even across hierarchical

boundaries – and will use dedicated fast connections to

build these DSP48 chains. The Register Balancing opti-

mization feature will consider the registers with DSP48

blocks when optimizing clock frequencies. Consult the

XST User Guide (http://toolbox.xilinx.com/docsan/xilinx7/

books/docs/xst/xst.pdf) for details about coding styles, and

watch the synthesis reports for specific implementation

results for your Virtex™-4 designs.

– David Dye

Senior Technical Marketing Engineer

Xilinx, Inc.

